GROWING GRAPES IN A GREENHOUSE IS A NEW REVOLUTION
DOI:
https://doi.org/10.30742/10.30742/jnsl.v3i2.388Keywords:
Grapes; viticulture; greenhouse; climate change; protected agriculture; precision viticulture.Abstract
Grapes (Vitis vinifera L.) is amongst the well-known fruits around the world. They are not only admire due to nutraceutical and extraordinary properties but also for the multiple uses, viz, wines, juices, raisins and fresh consumption, along with side uses as in medicines and molasses etc. The modern world is facing problems of climate change, water shortage, land limitations and multiple fold increase in population. In order to meet the needs of the ever-increasing human population, intensive cultivation with limited resources is vital. Greenhouse cultivation is one of the best options for production of delicate fruits like grapes, having specific environmental requirements for giving bumper commercial crop. Precision viticulture, adopted under greenhouse conditions helps in improving the quality and quantity of produce, without compromising environmental and economic aspects. Smart choice of rootstock, efficient irrigation method, justified pruning and training of vines, timely application of just the right amount of nutrients, proper management of growth media, temperature and humidity control according to the needs of the particular growth stages of plant and controlled pollination can make possible the availability of out of season crop. This system also provides opportunities for agrotourism and a more controlled environment for future research. Installment of greenhouse demands a lot of investment both in terms of money and expertise but once established, the returns are multiple fold compared to the early investment.
References
Alonso, F., Chiamolera, F. M., Hueso, J. J., González, M., & Cuevas, J. (2021). Heat unit requirements of “flame seedless” table grape: a tool to predict its harvest period in protected cultivation. Plants, 10(5), 904.
Badji, A., Benseddik, A., Bensaha, H., Boukhelifa, A., & Hasrane, I. (2022). Design, technology, and management of greenhouse: A review. Journal of Cleaner Production, 133753.
Cabral, I. L., Teixeira, A., Lanoue, A., Unlubayir, M., Munsch, T., Valente, J., Alves, F., da Costa, P. L., Rogerson, F. S., & Carvalho, S. M. (2022). Impact of Deficit Irrigation on Grapevine cv.‘ Touriga Nacional’during Three Seasons in Douro Regi¬on: An Agronomical and Metabolomics Approach. Plants, 11(6), 732.
Čarija, M., Černi, S., Stupin-Polančec, D., Radić, T., Gaši, E., & Hančević, K. (2022). Grapevine Leafroll-Associated Virus 3 Replication in Grapevine Hosts Changes through the Dormancy Stage. Plants, 11(23), 3250.
Cataldo, E., Fucile, M., & Mattii, G. B. (2021). A review: Soil management, sustainable strategies and approaches to improve the quality of modern viticulture. Agronomy, 11(11), 2359.
Chang, Y., Rossi, L., Zotarelli, L., Gao, B., & Sarkhosh, A. (2021). Greenhouse evaluation of pinewood biochar effects on nutrient status and physiological performance in Muscadine grape (Vitis rotundifolia L.). HortScience, 56(2), 277-285.
Cooper, P. D., Truong, T. T., Keszei, A., Neeman, T., & Webster, K. W. (2023). The Effect of Scale Insects on Growth Parameters of cv. Chardonnay and cv. Sauvignon Blanc Grapevines Grown in a Greenhouse. International Journal of Molecular Sciences, 24(2), 1544.
Dottori, E. (2023). Adaptation Strategies to Climate Change in Vineyard: innovation in vine training and pruning system, and cover crops.
Droulia, F., & Charalampopoulos, I. (2021). Future climate change impacts on European viticulture: A review on recent scientific advances. Atmosphere, 12(4), 495.
Droulia, F., & Charalampopoulos, I. (2022). A review on the observed climate change in Europe and its impacts on viticulture. Atmosphere, 13(5), 837.
Freeman, L., Garcia, E., & McWhirt, A. High Tunnel Grapes: Pruning, Trellising, and Training.
Gao, Q., Wang, P., Niu, T., He, D., Wang, M., Yang, H., & Zhao, X. (2022). Soluble solid content and firmness index assessment and maturity discrimination of Malus micromalus Makino based on near-infrared hyperspectral imaging. Food Chemistry, 370, 131013.
García-Navarro, F. J., Jiménez-Ballesta, R., Perales, J. A. L., Perez, C., Amorós, J. A., & Bravo, S. (2023). Sustainable Viticulture in the Valdepeñas Protected Designation of Origin: From Soil Quality to Management in Vitis vinifera. Sustainability, 15(12), 9339.
Garcia-Tejera, O., Bonada, M., Petrie, P., Nieto, H., Bellvert, J., & Sadras, V. (2023). Viticulture adaptation to global warming: Modelling gas exchange, water status and leaf temperature to probe for practices manipulating water supply, canopy reflectance and radiation load. Agricultural and Forest Meteorology, 331, 109351.
Gruda, N. S. (2019). Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy, 9(6), 298.
Hu, W., Wang, J., Deng, Q., Liang, D., Xia, H., Lin, L., & Lv, X. (2023). Effects of Different Types of Potassium Fertilizers on Nutrient Uptake by Grapevine. Horticulturae, 9(4), 470.
Ingle, S., Srivastava, J., & Shete, R. (2022). Diseases of Grapevine (Vitis Vinifera L.) and Their Management. Diseases of Horticultural Crops: Diagnosis and Management: Volume 1: Fruit Crops, 201.
Karampini, T. (2022). Comparative Study of Conventional and “Smart” Plant Protection Systems in Vineyards in Terms of Economic Analysis University of Piraeus (Greece)].
Kizildeniz, T., Movila, M., Bettoni, M. M., Abdullateef, S., & Candar, S. (2022). Grapevine Propagation Method with Two Temperature Controlling Process. Viticulture Studies, 2, 045-053.
Kontaxakis, E., Papadimitriou, D., Daliakopoulos, I., Sabathianakis, I., Stavropoulou, A., & Manios, T. (2023). Water Availability in Pumice, Coir, and Perlite Substrates Regulates Grapevine Growth and Grape Physicochemical Characteristics in Soilless Cultivation of Sugraone and Prime Cultivars (Vitis vinifera L.). Agriculture, 13(9), 1690.
Laurita, R., Contaldo, N., Zambon, Y., Bisag, A., Canel, A., Gherardi, M., Laghi, G., Bertaccini, A., & Colombo, V. (2021). The use of plasma‐activated water in viticulture: Induction of resistance and agronomic performance in greenhouse and open field. Plasma Processes and Polymers, 18(1), 2000206.
Li, Z., Huang, H., Duan, Z., & Zhang, W. (2023). Control temperature of greenhouse for higher yield and higher quality grapes production by combining STB in situ service with on time sensor monitoring. Heliyon, 9(2).
Martínez, S., Lacuesta, M., Relloso, J. B., Aragonés, A., Herrán, A., & Ortiz-Barredo, A. (2023). European Grapevine Cultivars and Rootstocks Show Differential Resistance to Xylella fastidiosa Subsp. fastidiosa. Horticulturae, 9(11), 1224.
Mian, G., Musetti, R., Belfiore, N., Boscaro, D., Lovat, L., & Tomasi, D. (2023). Chitosan application reduces downy mildew severity on grapevine leaves by positively affecting gene expression pattern. Physiological and Molecular Plant Pathology, 125, 102025.
Noyce, P., Offler, C., Steel, C., Enright, J., & Grof, C. (2022). Methods for continual production of grapevine plants grown from green cuttings, with repeated budburst induction, in an environmentally controlled greenhouse. Australian Journal of Grape and Wine Research, 28(1), 86-94.
Ozdemir, G., Sessiz, A., & Pekitkan, F. G. (2017). Precision Viticulture tools to production of high quality grapes. Scientific Papers. Series B. Horticulture, 61.
Perria, R., Ciofini, A., Petrucci, W. A., D’Arcangelo, M. E. M., Valentini, P., Storchi, P., Carella, G., Pacetti, A., & Mugnai, L. (2022). A Study on the Efficiency of Sustainable Wine Grape Vineyard Management Strategies. Agronomy, 12(2), 392.
Pinillos, V., Ibáñez, S., Cunha, J. M., Hueso, J. J., & Cuevas, J. (2020). Postveraison deficit irrigation effects on fruit quality and yield of “Flame Seedless” table grape cultivated under greenhouse and net. Plants, 9(11), 1437.
Pisciotta, A., Barone, E., & Di Lorenzo, R. (2022). Table-grape cultivation in soil-less systems: A review. Horticulturae, 8(6), 553.
Ramos, M., Daranas, N., Llugany, M., Tolrà, R., Montesinos, E., & Badosa, E. (2022). Grapevine response to a Dittrichia viscosa extract and a Bacillus velezensis strain. Frontiers in Plant Science, 13, 1075231.
Rehermann, G., Spitaler, U., Sahle, K., Cossu, C. S., Donne, L. D., Bianchi, F., Eisenstecken, D., Angeli, S., Schmidt, S., & Becher, P. G. (2022). Behavioral manipulation of Drosophila suzukii for pest control: high attraction to yeast enhances insecticide efficacy when applied on leaves. Pest Management Science, 78(3), 896-904.
Restani, P., Fradera, U., Ruf, J.-C., Stockley, C., Teissedre, P.-L., Biella, S., Colombo, F., & Lorenzo, C. D. (2021). Grapes and their derivatives in modulation of cognitive decline: a critical review of epidemiological and randomized-controlled trials in humans. Critical Reviews in Food Science and Nutrition, 61(4), 566-576.
Sabir, A., Kucukbasmaci, A., Taytak, M., Bilgin, O. F., Jawshle, A. I. M., Mohammed, M., & Gayretli, Y. (2018). Sustainable viticulture practices on the face of climate change. Agric. Res. Technol. Open Access J, 17, 556033.
Sabir, A., Sabir, F., Kara, Z., Gayretli, Y., Mohammed, O. J. M., Jawshle, A. I. M., & Kus, A. D. (2019). Berry set and quality response of soilless grown ‘Prima’grapes to foliar and inflorescence pulverization of various substances under glasshouse condition. Erwerbs-Obstbau, 61(1), 47-51.
Sabir, A., Seher, K., & Ferhan, S. (2020). Qualitative and quantitative responses of early ripening table grape cultivars (Vitis vinifera L.) to pollination treatments under controlled growing condition. Erwerbs-Obstbau, 62, 75-80.
Schwerz, F., Weber, F. J., Signor, F. M., Schwerz, L., Buono da Silva Baptista, V., Marin, D. B., Rossi, G., Conti, L., & Bambi, G. (2023). Economic Viability and Quality of Grapes Produced with and without Plastic Covering. Agronomy, 13(6), 1443.
Shahbazi, R., Kouravand, S., & Hassan-Beygi, R. (2023). Analysis of wind turbine usage in greenhouses: wind resource assessment, distributed generation of electricity and environmental protection. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(3), 7846-7866.
Song, F., & Xu, X. (2023). How Operation Scale Improve the Production Technical Efficiency of Grape Growers? An Empirical Evidence of Novel Panel Methods for China’s Survey Data. Sustainability, 15(4), 3694.
Spitaler, U., Cossu, C. S., Delle Donne, L., Bianchi, F., Rehermann, G., Eisenstecken, D., Castellan, I., Duménil, C., Angeli, S., & Robatscher, P. (2022). Field and greenhouse application of an attract‐and‐kill formulation based on the yeast Hanseniaspora uvarum and the insecticide spinosad to control Drosophila suzukii in grapes. Pest Management Science, 78(3), 1287-1295.
Svyantek, A., Brooke, M., Auwarter, C., & Hatterman-Valenti, H. (2022). Influence of greenhouse maintenace treatments on growth of seedling grapevines (Vitis spp.). AgroLife Scientific Journal, 11(2).
Wei, X., Wu, L., Ge, D., Yao, M., & Bai, Y. (2022). Prediction of the maturity of greenhouse grapes based on imaging technology. Plant Phenomics.
Yoshida, T., Onishi, Y., Kawahara, T., & Fukao, T. (2022). Automated harvesting by a dual-arm fruit harvesting robot. Robomech Journal, 9(1), 1-14.
Yu, S., Li, B., Guan, T., Liu, L., Wang, H., Liu, C., Zang, C., Huang, Y., & Liang, C. (2022). A Comparison of Three Types of “Vineyard Management” and Their Effects on the Structure of Plasmopara viticola Populations and Epidemic Dynamics of Grape Downy Mildew. Plants, 11(16), 2175.
Zheng, S., Wang, T., Wei, X., Li, B., & Bai, Y. (2022). Greenhouse grapevine transpiration and water use efficiency under different water and nitrogen conditions. Irrigation and Drainage, 71(1), 48-60.